Detecting the Affordance of Tool Parts using Geometric Features and Material Cues
نویسندگان
چکیده
Title of dissertation: From Form to Function: Detecting the Affordance of Tool Parts using Geometric Features and Material Cues Austin O. Myers, Doctor of Philosophy, 2016 Dissertation directed by: Professor Yiannis Aloimonos Department of Computer Science With recent advances in robotics, general purpose robots like Baxter are quickly becoming a reality. As robots begin to collaborate with humans in everyday workspaces, they will need to understand the functions of objects and their parts. To cut an apple or hammer a nail, robots need to not just know a tool’s name, but they must find its parts and identify their potential functions, or affordances. As Gibson remarked, “If you know what can be done with a[n] object, what it can be used for, you can call it whatever you please.” We hypothesize that the geometry of a part is closely related to its affordance, since its geometric properties govern the possible physical interactions with the environment. In the first part of this thesis, we investigate how the affordances of tool parts can be predicted using geometric features from RGB-D sensors like Kinect. We develop several approaches to learn affordance from geometric features: using superpixel based hierarchical sparse coding, structured random forests, and convolutional neural networks. To evaluate the proposed methods, we construct a large RGB-D dataset where parts are labeled with multiple affordances. Experiments over sequences containing clutter, occlusions, and viewpoint changes show that the approaches provide precise predictions that can be used in robotics applications. In addition to geometry, the material properties of a part also determine its potential functions. In the second part of this thesis, we investigate how material cues can be integrated into a deep learning framework for affordance prediction. We propose a modular approach for combining high-level material information, or other mid-level cues, in order to improve affordance predictions. We present experiments which demonstrate the efficacy of our approach on an expanded RGB-D dataset, which includes data from non-tool objects and multiple depth sensors. The work presented in this thesis lays a foundation for the development of robots which can predict the potential functions of tool parts, and provides a basis for higher level reasoning about affordance. From Form to Function: Detecting the Affordance of Tool Parts using Geometric Features and Material Cues
منابع مشابه
Performance evaluation of block-based copy- move image forgery detection algorithms
Copy-move forgery is a particular type of distortion where a part or portions of one image is/are copied to other parts of the same image. This type of manipulation is done to hide a particular part of the image or to copy one or more objects into the same image. There are several methods for detecting copy-move forgery, including block-based and key point-based methods. In this paper, a method...
متن کاملAffordance of Object Parts from Geometric Features
As robots begin to collaborate with humans in everyday workspaces, they will need to understand the functions of tools and their parts. To cut an apple or hammer a nail, robots need to not just know the tool’s name, but they must localize the tool’s parts and identify their functions. In this extended abstract, we give an overview of our work on localizing and identifying object part affordance...
متن کاملDetermining Effective Features for Face Detection Using a Hybrid Feature Approach
Detecting faces in cluttered backgrounds and real world has remained as an unsolved problem yet. In this paper, by using composition of some kind of independent features and one of the most common appearance based approaches, and multilayered perceptron (MLP) neural networks, not only some questions have been answered, but also the designed system achieved better performance rather than the pre...
متن کاملCutting Forces and Tool Wear Investigation for Face Milling of Bimetallic Composite Parts Made of Aluminum and Cast Iron Alloys
Bimetallic parts are used in many industries for weight and cost reduction of workpieces working under high loads and wear. One application for this type of composite material is in automotive industry. In this work the tool wear and cutting forces in the face milling of bimetallic parts made of aluminum and cast iron were investigated. A356 and GG25 alloys that are common materials for bimetal...
متن کاملExtraction of Drug-Drug Interaction from Literature through Detecting Linguistic-based Negation and Clause Dependency
Extracting biomedical relations such as drug-drug interaction (DDI) from text is an important task in biomedical NLP. Due to the large number of complex sentences in biomedical literature, researchers have employed some sentence simplification techniques to improve the performance of the relation extraction methods. However, due to difficulty of the task, there is no noteworthy improvement in t...
متن کامل